Notizen

Reaktionen von Oxazolin-5-on-Anionen, IX1)

Ein einfaches Verfahren zur Darstellung von Derivaten der δ-Aminolävulinsäure und verwandter Verbindungen

Günter Schulz und Wolfgang Steglich*

Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Str. 1, D-5300 Bonn

Eingegangen am 29. Mai 1979

Reactions of Oxazolin-5-one Anions, IX1)

A Simple Procedure for the Preparation of δ -Aminolevulinic Acid Derivatives and Related Compounds

Cyclization of Z-dipeptides 1 with acetic anhydride leads to 2-oxazolin-5-ones, which yield the corresponding 3-oxazolin-5-ones 2 by base-catalyzed addition of ethyl acrylate or acrylonitrile. Hydrolysis of 2a gives ethyl δ -(benzyloxycarbonylamino)levulinate (3a), which may be converted into several N-protected derivatives 3e-i. Via the same procedure the homologue 3b and the nitriles 3c, d are easily obtained.

Für δ-Aminolävulinsäure, den Vorläufer der natürlichen Porphyrine²⁾, sind zahlreiche Synthesen bekannt³⁾. Wir berichten im folgenden über eine variationsfähige Methode zur Darstellung ihrer Derivate, die auch für längerkettige oder verzweigte Verbindungen dieses Typs geeignet ist.

Chem. Ber. 113, 787 - 790 (1980)

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980

0009 - 2940/80/0202 - 0787 \$ 02.50/0

Die basenkatalysierte Addition von Acrylsäure-ethylester oder Acrylonitril an 2-Oxazolin-5-one⁴⁾ aus *N*-Acyldipeptiden $1^{5)}$ eröffnet einen einfachen Zugang zu 3-Oxazolinonen 2, deren schonende Hydrolyse glatt die Ketone 3a - d liefert⁶⁾. Beispielsweise ergibt Z-Gly-Val-OH (1a) auf diesem Wege in 78proz. Gesamtausbeute δ -(Benzyloxycarbonylamino)lävulinsäure-ethylester (3a).

Durch Variation der N-terminalen Aminosäure im N-Acyldipeptid 1 können entsprechend homologe (3b, c) oder verzweigte (3d) (Acylamino)oxosäure-ester bzw. -nitrile dargestellt werden. Im Falle von 3d ließ sich bei der Hydrolyse des 3-Oxazolinons 2d eine Racemisierung des der Carbonylgruppe benachbarten Chiralitätszentrums nicht vermeiden.

Die Abspaltung der Z-Schutzgruppe mit HBr/AcOH⁷⁾ ermöglicht die einfache Überführung von 3a in die entsprechenden Acetyl-, Pivaloyl-, 4-Nitrobenzoyl-, Trityl- und 2,4-Dinitrophenyl-Derivate 3e - i.

Experimenteller Teil

IR-Spektren: Spektrometer SP 1100, Pye Unicam. – ¹H-NMR-Spektren: Spektrometer EM 390, Varian (90 MHz; CDCl₃ als Lösungsmittel, TMS als innerer Standard, δ-Werte). – Schmelzpunkte: Heiztischmikroskop, Reichert; unkorrigierte Temperaturwerte. – Optischer Drehwert: Polarimeter 241, Perkin-Elmer; Na-Dampflampe. – Säulenchromatographie/Filtration: Kieselgel (0.06 – 0.1 mm) oder Polyamid SC 6 (0.07 mm), Macherey und Nagel. – Die Elementaranalysen verdanken wir dem analytischen Labor des Instituts.

Die N-(Benzyloxycarbonyl)dipeptide 1 wurden durch Kupplung der N-(Benzyloxycarbonyl)aminosäure-phenylthioester⁸⁾ mit Valin in Eisessig⁹⁾ dargestellt.

3-Oxazolin-5-one (2): Die Darstellung erfolgte wie in Lit. 5), wobei die Ansatzgröße ohne Nachteil vervielfacht werden kann, z. B.:

2-[(Benzyloxycarbonylamino)methyl]-4-isopropyl-5-oxo-3-oxazolin-2-propansäure-ethylester (2a): 61.7 g (0.2 mol) Z-Gly-Val-OH (1a) werden 50 min in 150 ml Acetanhydrid auf 80°C erwärmt. Man dampft i. Vak. ein und entfernt Acetanhydridreste durch dreimaliges Aufnehmen in je 150 ml trockenem Toluol und anschließendes Abdampfen des Lösungsmittels. Nach Mischen mit 150 ml frisch destilliertem Acrylsäure-ethylester tropft man bei −10°C 27.6 ml (0.2 mol) Triethylamin unter kräftigem Rühren zu, läßt Aufwärmen und hält 2.5 d bei 50°C. Nach Überprüfen auf vollständigen Umsatz (IR-Spektrum⁴)) wird i. Vak. eingedampft und das orangefarbene Öl mit Methylenchlorid auf Polyamid aufgezogen. Aufgeben auf eine kurze Polyamidsäule (20 × 5 cm) und kontinuierlich geführte Elution mit Petrolether (40/60°C, ca. 3.5 l im Kreislauf, 1.5 d) ergibt nach Eindampfen i. Vak. 67 g (86%) 2a.

Spektroskopische Daten und Ausbeuten von **2a**, **b**, **d** siehe Lit.⁵⁾. Bei **2c** betrug die Ausbeute des 10-mmol-Ansatzes 3.19 g (68%). – IR (CCl₄): 3500, 1790, 1735, 1645 cm⁻¹. – ¹H-NMR: $\delta = 1.00 - 1.59$, m [16]; 1.30, d, J = 6.5 Hz [6]; 1.70 – 2.03, m [2]; 2.10 – 2.37, m [4]; 2.97, sept., J = 6.5 Hz [1]; 3.13, q, J = 6 Hz [2]; 4.87, s [1] breit; 5.06, s [2]; 7.31, s [5].

Allgemeine Vorschrift zur Hydrolyse der 3-Oxazolin-5-one 2a – d zu den Verbindungen 3a – d: 10 mmol 2 werden in 20 ml THF (2b, d) oder Ethanol (2a, c) und 20 ml wäßr. gesättigter Natriumhydrogencarbonatlösung mit Bodenkörper 36 – 48 h bei ca. 60 °C kräftig gerührt. Nach Abziehen des organischen Lösungsmittels i. Vak. extrahiert man zweimal mit je 50 ml Methylenchlorid und erhält nach Trocknen über MgSO₄ und Eindampfen 3a – d als farblosen, spektroskopisch reinen Feststoff, der zur Analyse gegebenenfalls aus n-Pentan rekristallisiert wird. 10fache Ansatzgröße ist ohne Nachteil möglich (Tab. 2).

Tab. 1. Physikalische Daten und Verbrennungsanalysen der 3-Oxazolin-5-one 2

	Name der Verbindung	Schmp. [°C]	Summenformel (Molmasse)		Verbr C	ennung H	gsanalyse N
2 a	2-[(Benzyloxycarbonylami- no)methyl]-4-isopropyl- 5-oxo-3-oxazolin-2-pro- pansäure-ethylester	58 – 61	C ₂₀ H ₂₆ N ₂ O ₆ (390.4)	Ber. Gef.	61.53 61.35	6.71 6.69	7.18 7.32
b	2-[2-(Benzyloxycarbonyl- amino)ethyl]-4-isopropyl- 5-oxo-3-oxazolin-2-pro- pansäure-ethylester	Öl	C ₂₁ H ₂₈ N ₂ O ₆ (404.5)	Ber. Gef.	62.36 62.15	6.98 6.80	6.93 6.85
c	2-[10-(Benzyloxycarbonyl- amino)decyl]-4-isopropyl- 5-oxo-3-oxazolin-2- propiononitril	39 – 39.5	C ₂₇ H ₃₉ N ₃ O ₄ (469.6)	Ber. Gef.	69.06 68.81	8.37 8.36	8.95 8.97
d	2-[1-(Benzyloxycarbonyl- amino)ethyl]-4-isopropyl- 5-oxo-3-oxazolin-2- propiononitril	ÖI	C ₁₉ H ₂₃ N ₃ O ₄ (357.4)	Ber. Gef.	63.85 63.61	6.49 6.41	11.76 11.55

Tab. 2. Ausbeuten, physikalische Daten und Verbrennungsanalysen der Verbindungen 3

	Name der Verbindung	Ausb.	Schmp. [°C]	Summenformel (Molmasse)		Verbre C	ennung H	gsanalyse N
3 a	5-(Benzyloxycarbonyl- amino)-4-oxopentan- säure-ethylester	78 ^{a)}	58.5	C ₁₅ H ₁₉ NO ₅ (293.3)	Ber. Gef.	61.42 61.19	6.53 6.45	4.78 4.67
b	6-(Benzyloxycarbonyl- amino)-4-oxohexan- säure-ethylester	65 ^{a)}	36	C ₁₆ H ₂₁ NO ₅ (307.3)	Ber. Gef.	Lit. ⁵⁾		
c	14-(Benzyloxycarbonyl- amino)-4-oxotetra- decannitril	61 ^{a)}	78.5	C ₂₂ H ₃₂ N ₂ O ₃ (372.5)	Ber Gef.	70.94 70.95	8.66 8.64	7.52 7.33
d	5-(Benzyloxycarbonyl- amino)-4-oxohexan- nitril ^{b)}	80 ^{a)}	67	C ₁₄ H ₁₆ N ₂ O ₃ (260.3)	Ber. Gef.	64.60 64.37	6.20 6.18	10.76 10.74
e	5-(Acetylamino)-4-oxo- pentansäure-ethylester	92°)	52.5	C ₉ H ₁₅ NO ₄ (201.2)	Ber. Gef.	Lit.5)		
f	4-Oxo-5-(pivaloylami- no)-pentansäure- ethylester	68 ^{c)}	Öl	C ₁₂ H ₂₁ NO ₄ (243.3)	Ber. Gef.	59.24 59.00	8.70 8.92	5.76 6.06
g	5-(4-Nitrobenzoylami- no)-4-oxopentan- säure-ethylester	90c)	148.5	C ₁₄ H ₁₆ N ₂ O ₆ (308.3)	Ber. Gef.	54.54 54.21	5.23 5.12	9.09 9.03
h	4-Oxo-5-(tritylamino)- pentansäure-ethylester	93°)	89 – 90	C ₂₆ H ₂₇ NO ₃ (401.5)	Ber. Gef.	77.78 78.06	6.78 6.80	3.49 3.32
i	5-(2,4-Dinitrophenyl- amino)-4-oxopentan- säure-ethylester	91°)	121.5	C ₁₃ H ₁₅ N ₃ O ₇ (325.3)	Ber. Gef.	48.00 47.88	4.65 4.64	12.92 12.97

a) Ausb. bezogen auf 1. - b) Nach 48 h bei 60 °C zeigte eine ausgehend von Z-L-Ala-D,L-Val-OH erhaltene Probe von **3d** einen Drehwert [α] $_{20}^{D} = -1.1^{\circ}$ (Methanol, c = 5), nach weiteren 12 h war [α] $_{20}^{D} = 0^{\circ}$. - c) Ausb. bezogen auf **3a**.

Allgemeine Vorschrift zum Austausch der Z-Schutzgruppe in 3a gegen andere Reste R³ zu 3e-i: 1.0 g (3.4 mmol) 3a wird in 10 ml mit HBr gesättigtem Eisessig bis zum Ende der CO₂-Entwicklung gerührt. Man fällt mit 100 ml trockenem Ether aus, kühlt auf -20°C, dekantiert und wäscht zweimal mit je 50 ml trockenem Ether. Nach Aufnehmen in 30 ml trockenem Methylenchlorid versetzt man mit dem Acylierungs- oder Alkylierungsmittel [bei Umssetzung zu 3e: 1 ml (ca. 3 Äquivalente) Acetanhydrid; 3f: 1 ml (ca. 2 Äquivalente) Pivaloylchlorid; 3g: 0.63 g (3.4 mmol) 4-Nitrobenzoylchlorid; 3h: 0.95 g (3.4 mmol) Tritylchlorid; 3i: 0.63 g (3.4 mmol) 2,4-Dinitrofluorbenzol], tropft bei -20°C 1 ml (7.3 mmol) Triethylamin in 10 ml Methylenchlorid zu, läßt Aufwärmen und schüttelt nach 3 h mit verd. Salzsäure, gesättigter Natriumhydrogencarbonatlösung und Wasser aus. Reinigung erfolgt durch Rekristallisation aus CHCl₃/Petrolether (40/60°C) oder Filtrieren über Kieselgel (3f, Eluent: CH₂Cl₂/2% Methanol) (Tab. 2).

Tab. 3. ¹H-NMR-Spektren (CDCl₃, δ-Werte, TMS als innerer Standard) und ausgewählte IR-Daten der Verbindungen 3a – d

	¹H-NMR	IR [cm ⁻¹]
3 a	$\delta = 1.24$, t, $J = 7$ Hz [3]; 2.53 – 2.87, m [4]; 4.12, d, $J = 5$ Hz [2]; 4.13, q, $J = 7$ Hz [2]; 5.10, s [2]; 5.44, s [1] breit; 7.34, s [5]	3480, 1730, 1698a)
b	Lit. ⁵⁾	
c	1.13-1.81, m [16]; 2.40, t, $J=$ ca. 7 Hz [2] verbr.; 2.43 - 2.83, m [4]; 3.16, q, $J=$ ca. 6 Hz [2] verbr.; 4.77, s [1] breit; 5.10, s [2]; 7.33, s [5]	3465, 1710, 1690a)
d	1.33, d, $J = 7$ Hz [3]; 2.40 – 2.67, m [2]; 2.73 – 3.00, m [2]; 4.33, pent., $J = \text{ca. 7 Hz}$ [1] verbr.; 5.07, s [2]; 5.43, d, $J = \text{ca. 7 Hz}$ [1] breit; 7.33, s [5]	3470, 2260, 1725, 1715 ^{b)}

a) Messung in KBr. - b) Messung in CHCl₃.

Literatur

- 1) VIII. Mitteil.: B. Kübel, P. Gruber, R. Hurnaus und W. Steglich, Chem. Ber. 112, 128 (1979).
- ²⁾ Vgl. z. B. D. Shemin und C. S. Russell, J. Am. Chem. Soc. **75**, 4873 (1953).
- 3) Neuere Synthesen: D. A. Evans und P. J. Sidebottom, J. Chem. Soc., Chem. Commun. 1978, 753; Z. Rykowski, K. Burak und Z. Chabudzinski, Rocz. Chem. 51, 1675 (1977).
- W. Steglich, P. Gruber, G. Höfle und W. König, Angew. Chem. 83, 725 (1971); Angew. Chem., Int. Ed. Engl. 10, 653 (1971).
- 5) G. Schulz und W. Steglich, Chem. Ber. 113, 770 (1980), vorstehend.
- 6) Vgl. dazu W. Steglich und P. Gruber, Angew. Chem. 83, 727 (1971); Angew. Chem., Int. Ed. Engl. 10, 655 (1971), und N. Engel, B. Kübel und W. Steglich, Angew. Chem. 89, 408 (1977); Angew. Chem., Int. Ed. Engl. 16, 394 (1977).
- 7) D. Ben-Ishai und A. Berger, J. Org. Chem. 17, 1564 (1952).
- 8) P. Thamm in Methoden der Organischen Chemie (Houben-Weyl-Müller), Bd. XV/1, Synthese von Peptiden, S. 412, Thieme, Stuttgart 1974.
- ⁹⁾ F. Weygand und W. Steglich, Chem. Ber. **93**, 2983 (1960).

[188/79]